Nonlinear generalized Dunkl-wave equations and applications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grassmannians, Nonlinear Wave Equations and Generalized Schur Functions

The solution space of the KP hierarchy of nonlinear evolution equations is known to have the geometric structure of an infinite dimensional Grassmannian manifold. This paper demonstrates this fact in an elementary way. Specifically, it is explained how one may use the recently introduced N-Schur functions to “translate” the nonlinear differential equations into the algebraic Plücker relations f...

متن کامل

Generalized Dunkl-sobolev Spaces of Exponential Type and Applications

We study the Sobolev spaces of exponential type associated with the Dunkl-Bessel Laplace operator. Some properties including completeness and the imbedding theorem are proved. We next introduce a class of symbols of exponential type and the associated pseudodifferential-difference operators, which naturally act on the generalized Dunkl-Sobolev spaces of exponential type. Finally, using the theo...

متن کامل

Classification of Solitary Wave Bifurcations in Generalized Nonlinear Schrdinger Equations

Bifurcations of solitary waves are classified for the generalized nonlinear Schrödinger equations with arbitrary nonlinearities and external potentials in arbitrary spatial dimensions. Analytical conditions are derived for three major types of solitary wave bifurcations, namely, saddle-node, pitchfork, and transcritical bifurcations. Shapes of power diagrams near these bifurcations are also obt...

متن کامل

Analysis of nonlinear wave equations and applications in engineering

Nonlinear dispersive wave equations arise naturally in scientific and engineering fields such as fluid dynamics, electromagnetic theory, quantum mechanics, optical communication, nonlinear optics etc. Many important questions (both in theory and applications) are related to the interaction of two effects: energy spreading (dispersion, diffraction) and energy concentrating (nonlinear self-trappi...

متن کامل

Nonlinear Wave Equations

where := −∂2 t +∆ and u[0] := (u, ut)|t=0. The equation is semi-linear if F is a function only of u, (i.e. F = F (u)), and quasi-linear if F is also a function of the derivatives of u (i.e. F = F (u,Du), where D := (∂t,∇)). The goal is to use energy methods to prove local well-posedness for quasilinear equations with data (f, g) ∈ Hs × Hs−1 for large enough s, and then to derive Strichartz esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2011

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2010.08.058